Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 294
Filtrar
1.
Swiss Dent J ; 134(1): 84-104, 2024 Feb 19.
Artigo em Alemão | MEDLINE | ID: mdl-38739045

RESUMO

The aim of the treatment of this case was to restore the form, function and aesthetics of all teeth in a patient with amelogenesis imperfecta within the age limit of the disability insurance (IV). Single-tooth zirconia crowns were selected as the treatment of choice and cemented with a conventional glass ionomer cement. For the maintenance of the oral rehabilitation and the protection of the reconstructions a michigan splint was produced and instructed to be carried over night.


Assuntos
Amelogênese Imperfeita , Coroas , Humanos , Amelogênese Imperfeita/reabilitação , Cimentos de Ionômeros de Vidro/uso terapêutico , Zircônio , Feminino , Masculino , Estética Dentária , Planejamento de Prótese Dentária , Placas Oclusais
2.
Int Dent J ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38679519

RESUMO

OBJECTIVES: Correct identification and management of Developmental Defects of Enamel (DDEs) are essential to provide the best possible treatment. The present survey aims to investigate Italian dentists' knowledge of DDEs, their ability to recognise the different clinical pictures, and to choose the most appropriate clinical approach. METHODS: A cross-sectional survey was planned based on a questionnaire including 27 closed-ended questions, and that proposed 4 clinical pictures, molar incisor hypomineralisation (MIH), amelogenesis imperfecta (AI), dental fluorosis (DF), and an initial caries lesion (ICL). It was distributed by e-mail to all Italian dentists (N = 63,883) through the Italian Federation of Doctors and Dentists. Discrete variables were expressed as absolute and relative frequencies (%). A multivariate analysis assessed whether socio-demographic variables correlated with the answers' truthfulness. RESULTS: About 5017 questionnaires were included and analysed. Although 90.19% of the sample stated that they had received information on DDEs, a significant percentage did not recognise MIH (36.36%), AI (48.34%), DF (71.50%), and ICL (46.62%). Only 57.07% correctly classified enamel hypomineralisation as a qualitative defect, and even fewer, 54.45%, classified enamel hypoplasia as a quantitative defect. According to the logistic regressions, female dentists, dentists who treat mainly children and received information about DDEs, were more likely to recognise the 4 clinical pictures (P < .01). CONCLUSIONS: Italian dentists showed many knowledge gaps on DDEs that need to be filled; those who received formal training were more capable of correctly identifying the defects and were more likely to prescribe an appropriate management approach for the defects. CLINICAL SIGNIFICANCE: Increasing university courses and continuing education on diagnosing and managing DDEs seems reasonable to fill the knowledge gap on DDEs.

3.
Clin Case Rep ; 12(3): e8704, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38523819

RESUMO

Treatment of patients with amelogenesis imperfecta extends over many years, from childhood to early adulthood. Their management at any age is complex and has to be adapted in relation to therapies validated in the general population.

4.
Chin J Dent Res ; 27(1): 53-63, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546520

RESUMO

OBJECTIVE: To investigate FAM20A gene variants and histological features of amelogenesis imperfecta and to further explore the functional impact of these variants. METHODS: Whole-exome sequencing (WES) and Sanger sequencing were used to identify pathogenic gene variants in three Chinese families with amelogenesis imperfecta. Bioinformatics analysis, in vitro histological examinations and experiments were conducted to study the functional impact of gene variants, and the histological features of enamel, keratinised oral mucosa and dental follicle. RESULTS: The authors identified two nonsense variants c. 406C > T (p.Arg136*) and c.826C > T (p.Arg176*) in a compound heterozygous state in family 1, two novel frameshift variants c.936dupC (p.Val313Argfs*67) and c.1483dupC (p.Leu495Profs*44) in a compound heterozygous state in family 2, and a novel homozygous frameshift variant c.530_531insGGTC (p.Ser178Valfs*21) in family 3. The enamel structure was abnormal, and psammomatoid calcifications were identified in both the gingival mucosa and dental follicle. The bioinformatics and subcellular localisation analyses indicated these variants to be pathogenic. The secondary and tertiary structure analysis speculated that these five variants would cause structural damage to FAM20A protein. CONCLUSION: The present results broaden the variant spectrum and clinical and histological findings of diseases associated with FAM20A, and provide useful information for future genetic counselling and functional investigation.


Assuntos
Amelogênese Imperfeita , Proteínas do Esmalte Dentário , Humanos , Amelogênese Imperfeita/genética , Calcificação Fisiológica , Biologia Computacional , Esmalte Dentário , Proteínas do Esmalte Dentário/genética , População do Leste Asiático
5.
Cureus ; 16(2): e53787, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38465125

RESUMO

This clinical case report details the comprehensive diagnosis and dental management of a seven-year-old female patient diagnosed with the rare genetic disorder, amelogenesis imperfecta and gingival fibromatosis syndrome (AIGFS). The case initially presented as congenital adrenal hyperplasia and amelogenesis imperfecta, but further genetic analysis revealed the involvement of AIGFS due to a mutation in the FAM20A gene. Diagnosis, confirmed through whole exome sequencing, clinical assessment, and laboratory tests, necessitated a multidisciplinary approach to address the treatment of such cases. The article underscores the critical importance of diagnosing and managing dental manifestations in pediatric patients with complex genetic conditions, highlighting the difficulties of treating AIGFS in mixed dentition. This case also highlights the indispensable role of pediatric dentists in diagnosing and treating these cases, ultimately improving the quality of life for individuals with AIGFS.

6.
Int Endod J ; 57(6): 745-758, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477421

RESUMO

AIM: Loss-of-function mutations in FAM20A result in amelogenesis imperfecta IG (AI1G) or enamel-renal syndrome, characterized by hypoplastic enamel, ectopic calcification, and gingival hyperplasia, with some cases reporting spontaneous tooth infection. Despite previous reports on the consequence of FAM20A reduction in gingival fibroblasts and transcriptome analyses of AI1G pulp tissues, suggesting its involvement in mineralization and infection, its role in deciduous dental pulp cells (DDP) remains unreported. The aim of this study was to evaluate the properties of DDP obtained from an AI1G patient, providing additional insights into the effects of FAM20A on the mineralization of DDP. METHODOLOGY: DDP were obtained from a FAM20A-AI1G patient (mutant cells) and three healthy individuals. Cellular behaviours were examined using flow cytometry, MTT, attachment and spreading, colony formation, and wound healing assays. Osteogenic induction was applied to DDP, followed by alizarin red S staining to assess their osteogenic differentiation. The expression of FAM20A-related genes, osteogenic genes, and inflammatory genes was analysed using real-time PCR, Western blot, and/or immunolocalization. Additionally, STRING analysis was performed to predict potential protein-protein interaction networks. RESULTS: The mutant cells exhibited a significant reduction in FAM20A mRNA and protein levels, as well as proliferation, migration, attachment, and colony formation. However, normal FAM20A subcellular localization was maintained. Additionally, osteogenic/odontogenic genes, OSX, OPN, RUNX2, BSP, and DSPP, were downregulated, along with upregulated ALP. STRING analysis suggested a potential correlation between FAM20A and these osteogenic genes. After osteogenic induction, the mutant cells demonstrated reduced mineral deposition and dysregulated expression of osteogenic genes. Remarkably, FAM20A, FAM20C, RUNX2, OPN, and OSX were significantly upregulated in the mutant cells, whilst ALP, and OCN was downregulated. Furthermore, the mutant cells exhibited a significant increase in inflammatory gene expression, that is, IL-1ß and TGF-ß1, whereas IL-6 and NFκB1 expression was significantly reduced. CONCLUSION: The reduction of FAM20A in mutant DDP is associated with various cellular deficiencies, including delayed proliferation, attachment, spreading, and migration as well as altered osteogenic and inflammatory responses. These findings provide novel insights into the biology of FAM20A in dental pulp cells and shed light on the molecular mechanisms underlying AI1G pathology.


Assuntos
Amelogênese Imperfeita , Diferenciação Celular , Proteínas do Esmalte Dentário , Polpa Dentária , Nefrocalcinose , Osteogênese , Dente Decíduo , Humanos , Células Cultivadas , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Polpa Dentária/citologia , Polpa Dentária/metabolismo , Expressão Gênica , Mutação , Osteogênese/genética
7.
Eur Arch Paediatr Dent ; 25(1): 85-91, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38308725

RESUMO

BACKGROUND: Amelogenesis imperfecta (AI) and dentinogenesis imperfecta (DI) are two groups of genetically inherited conditions resulting in abnormal enamel and dentin formation, respectively. Children and young people may be adversely affected by these conditions, with significant reduction in oral health related quality of life. Dental management of children with AI and DI is often complex, which is exacerbated by the absence of clear referral pathways and scarce evidence-based guidelines. METHOD: The need for increased knowledge and peer support led to the development of a group of UK paediatric dentists with a special clinical interest in the management of children with AI and DI. PURPOSE: The aims of this paper are to describe the establishment of an AI/DI Clinical Excellence Network (AI/DI CEN) in paediatric dentistry including outputs and future plans, and to share our collective learning to help support others anywhere in the world advance the care of people with AI or DI.


Assuntos
Amelogênese Imperfeita , Dentinogênese Imperfeita , Criança , Humanos , Adolescente , Amelogênese Imperfeita/terapia , Dentinogênese Imperfeita/terapia , Qualidade de Vida , Dentina , Reino Unido
9.
Heliyon ; 10(1): e23939, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192821

RESUMO

Amelogenesis imperfecta is a rare genetic disorder that interferes with normal enamel formation. Of the 4 main types of amelogenesis imperfecta, hypoplastic (type 1) is the most prevalent, characterized by a quantitative alteration in enamel. The pitting or reduced thickness of the enamel results in generalized hypersensitivity, increased susceptibility to caries and infection, attrition, and a loss in vertical dimension of occlusion. Prosthodontic management of these patients can be challenging not only functionally and restoratively, but also from an emotional and psychosocial standpoint. This clinical report describes the prosthodontic management and rehabilitation of two young adult siblings with hypoplastic (type 1) amelogenesis imperfecta.

10.
Heliyon ; 10(1): e23688, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38192829

RESUMO

Brachyolmia is a heterogeneous group of developmental disorders characterized by a short trunk, short stature, scoliosis, and generalized platyspondyly without significant deformities in the long bones. DASS (Dental Abnormalities and Short Stature), caused by alterations in the LTBP3 gene, was previously considered as a subtype of brachyolmia. The present study investigated three unrelated consanguineous families (A, B, C) with Brachyolmia and DASS from Egypt and Pakistan. In our Egyptian patients, we also observed hearing impairment. Exome sequencing was performed to determine the genetic causes of the diverse clinical conditions in the patients. Exome sequencing identified a novel homozygous splice acceptor site variant (LTBP3:c.3629-1G > T; p. ?) responsible for DASS phenotypes and a known homozygous missense variant (CABP2: c.590T > C; p.Ile197Thr) causing hearing impairment in the Egyptian patients. In addition, two previously reported homozygous frameshift variants (LTBP3:c.132delG; p.Pro45Argfs*25) and (LTBP3:c.2216delG; p.Gly739Alafs*7) were identified in Pakistani patients. This study emphasizes the vital role of LTBP3 in the axial skeleton and tooth morphogenesis and expands the mutational spectrum of LTBP3. We are reporting LTBP3 variants in seven patients of three families, majorly causing brachyolmia with dental and cardiac anomalies. Skeletal assessment documented short webbed neck, broad chest, evidences of mild long bones involvement, short distal phalanges, pes planus and osteopenic bone texture as additional associated findings expanding the clinical phenotype of DASS. The current study reveals that the hearing impairment phenotype in Egyptian patients of family A has a separate transmission mechanism independent of LTBP3.

11.
Spec Care Dentist ; 44(2): 465-471, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37365770

RESUMO

BACKGROUND: KohlschüttereTönz syndrome (KTS), also called amelo-cerebro-hypohidrotic syndrome, is a very rare genetic condition, described for the first time by Kohlschutter, which typically manifests as a triad of symptoms:  amelogenesis imperfecta, infantile onset epilepsy, and intellectual disability. 47 cases were reported in English language literature since 1974-2021. CASE REPORT: A 7-year-old girl was referred for dental evaluation. Oral examination revealed yellowish color of all the teeth due to enamel hypoplasia. The radiographic exam revealed a thin layer of enamel with decreased radiopacity of the enamel compared to that of dentin. The diagnosis of amelogenesis Imperfecta was established. In addition to that, the child's parents reported that she had spasticity, epileptic seizures and psychomotor developmental delay. The association of all these features leads us to conclude to KTS. CONCLUSION: It seems that numerous cases of KTS are still undiagnosed in the world, so this paper highlights the common clinical features of Kohlschütter-Tönz Syndrome helping to an early diagnosis and more research about this condition.


Assuntos
Amelogênese Imperfeita , Demência , Epilepsia , Dente , Criança , Feminino , Humanos , Amelogênese Imperfeita/complicações , Amelogênese Imperfeita/diagnóstico , Amelogênese Imperfeita/terapia , Esmalte Dentário , Síndrome
12.
Clin Genet ; 105(3): 243-253, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37937686

RESUMO

Amelogenesis imperfecta (AI) represents a group of clinically and genetically heterogeneous disorders that affect enamel formation and mineralization. Although AI is commonly considered a monogenic disorder, digenic inheritance is rarely reported. In this study, we recruited two nonconsanguineous Chinese families exhibiting diverse phenotypes of enamel defects among affected family members. Digenic variants were discovered in both probands. In family 1, the proband inherited a paternal frameshift variant in LAMA3 (NM_198129.4:c.3712dup) and a maternal deletion encompassing the entire AMELX gene. This resulted in a combined hypoplastic and hypomineralized AI phenotype, which was distinct from the parents' manifestations. In family 2, whole-exome sequencing analysis revealed the proband carried a maternal heterozygous splicing variant in COL17A1 (NC_000010.11 (NM_000494.3): c.4156 + 2dup) and compound heterozygous variants in RELT (paternal: NM_032871.4:c.260A > T; maternal: NM_032871.4:c.521 T > G). These genetic changes caused the abundant irregular enamel defects observed in the proband, whereas other affected family members carrying heterozygous variants in both COL17A1 and RELT displayed only horizontal grooves as their phenotype. The pathogenicity of the novel COL17A1 splice site variant was confirmed through RT-PCR and minigene assay. This study enhances our understanding by highlighting the potential association between the co-occurrence of variants in two genes and variable phenotypes observed in AI patients.


Assuntos
Amelogênese Imperfeita , Humanos , Amelogênese Imperfeita/genética , Fenótipo , Mutação da Fase de Leitura/genética , Proteínas da Matriz Extracelular/genética , Variação Biológica da População , Linhagem
13.
J Med Genet ; 61(4): 347-355, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-37979963

RESUMO

BACKGROUND: Collagen XVII is most typically associated with human disease when biallelic COL17A1 variants (>230) cause junctional epidermolysis bullosa (JEB), a rare, genetically heterogeneous, mucocutaneous blistering disease with amelogenesis imperfecta (AI), a developmental enamel defect. Despite recognition that heterozygous carriers in JEB families can have AI, and that heterozygous COL17A1 variants also cause dominant corneal epithelial recurrent erosion dystrophy (ERED), the importance of heterozygous COL17A1 variants causing dominant non-syndromic AI is not widely recognised. METHODS: Probands from an AI cohort were screened by single molecule molecular inversion probes or targeted hybridisation capture (both a custom panel and whole exome sequencing) for COL17A1 variants. Patient phenotypes were assessed by clinical examination and analyses of affected teeth. RESULTS: Nineteen unrelated probands with isolated AI (no co-segregating features) had 17 heterozygous, potentially pathogenic COL17A1 variants, including missense, premature termination codons, frameshift and splice site variants in both the endo-domains and the ecto-domains of the protein. The AI phenotype was consistent with enamel of near normal thickness and variable focal hypoplasia with surface irregularities including pitting. CONCLUSION: These results indicate that COL17A1 variants are a frequent cause of dominantly inherited non-syndromic AI. Comparison of variants implicated in AI and JEB identifies similarities in type and distribution, with five identified in both conditions, one of which may also cause ERED. Increased availability of genetic testing means that more individuals will receive reports of heterozygous COL17A1 variants. We propose that patients with isolated AI or ERED, due to COL17A1 variants, should be considered as potential carriers for JEB and counselled accordingly, reflecting the importance of multidisciplinary care.


Assuntos
Amelogênese Imperfeita , Colágenos não Fibrilares , Humanos , Colágenos não Fibrilares/genética , Colágenos não Fibrilares/metabolismo , Autoantígenos/genética , Amelogênese Imperfeita/genética , Heterozigoto , Fenótipo , Mutação/genética
14.
Cureus ; 15(11): e48395, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38073947

RESUMO

This clinical case report presents the prosthetic rehabilitation of a 23-year-old male patient with generalized discolored and worn-out teeth, which were of aesthetic and functional concern. In collaboration with the Department of Oral Medicine and Radiology and Oral Pathology, this clinical condition was diagnosed as amelogenesis imperfecta (AGI). AGI is a genetic odontological disorder that is an epithelial derivative of the developed tooth bud with enamel malformation. AGI typically affects both deciduous and permanent teeth. Patients generally have aesthetic complaints and compromised chewing efficiency with loss of vertical dimension. Prosthetically rehabilitating an AGI patient is a multidisciplinary approach to regain aesthetics, phonetics, and mastication. This article describes the full mouth rehabilitation, following the Pankey Mann Schuyler philosophy, of the patient with AGI involving all teeth. Full mouth rehabilitation was planned to restore aesthetics, phonetics, and mastication in four phases. First was prosthetic rehabilitation of the mandibular anterior teeth, followed by the maxillary anterior, mandibular posterior, and, finally, maxillary posterior teeth.

15.
Orphanet J Rare Dis ; 18(1): 371, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38037133

RESUMO

BACKGROUND: Short stature, amelogenesis imperfecta, and skeletal dysplasia with scoliosis is a rare, autosomal recessive, skeletal disorder first described in 2018. This syndrome starts with pre- and postnatal developmental delay, and gradually presents with variable facial dysmorphisms, a short stature, amelogenesis imperfecta, and progressive skeletal dysplasia affecting the limbs, joints, hands, feet, and spine. CASE PRESENTATION: We identified a homozygous novel nonsense mutation in exon 1 of SLC10A7 (NM_001300842.2: c.100G > T / p.Gly34*) segregating with the typical disease phenotype in a Han Chinese family. We reviewed the 12-year surgical treatment history with seven interventions on spine. CONCLUSION: To date, only 12 cases of the SLC10A7 mutation have been reported, mainly from consanguineous families. Our patient showed a relatively severe and broad clinical phenotype compared with previously reported cases. In this patient, annual check-ups and timely surgeries led to a good outcome.


Assuntos
Amelogênese Imperfeita , Nanismo , Osteocondrodisplasias , Escoliose , Humanos , Amelogênese Imperfeita/genética , Amelogênese Imperfeita/cirurgia , Nanismo/genética , Nanismo/cirurgia , Homozigoto , Mutação/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/cirurgia , Linhagem , Escoliose/genética , Escoliose/cirurgia
16.
Spec Care Dentist ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38151709

RESUMO

Jalili syndrome (JS) (MIM#217080) is a rare autosomal recessive disorder with oculo-dental malformations. The clinical phenotype is characterized by the presence of Cone-Rod Dystrophy (CRD) and Amelogenesis Imperfecta (AI). Genetic mechanism entails a mutation in the CNNM4, a metal transporter gene located on Chromosome 2q11.2. A high fluoride concentration in groundwater has also been identified as an epigenetic factor in this syndrome. JS draws the attention of dentists due to its distinct oral manifestations. To the best of our knowledge, this is the first genetically confirmed pediatric case report from the Indian subcontinent emphasizing the clinical and radiographic features of this condition and its management in a 6-year-old child.

17.
BMC Oral Health ; 23(1): 893, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985977

RESUMO

BACKGROUND: Amelogenesis imperfecta (AI) is a developmental enamel defect affecting the structure of enamel, esthetic appearance, and the tooth masticatory function. Gene mutations are reported to be relevant to AI. However, the mechanism underlying AI caused by different mutations is still unclear. This study aimed to reveal the molecular pathogenesis in AI families with 2 novel pre-mRNA splicing mutations. METHODS: Two Chinese families with AI were recruited. Whole-exome sequencing and Sanger sequencing were performed to identify mutations in candidate genes. Minigene splicing assays were performed to analyze the mutation effects on mRNA splicing alteration. Furthermore, three-dimensional structures of mutant proteins were predicted by AlphaFold2 to evaluate the detrimental effect. RESULTS: The affected enamel in family 1 was thin, rough, and stained, which was diagnosed as hypoplastic-hypomature AI. Genomic analysis revealed a novel splicing mutation (NM_001142.2: c.570 + 1G > A) in the intron 6 of amelogenin (AMELX) gene in family 1, resulting in a partial intron 6 retention effect. The proband in family 2 exhibited a typical hypoplastic AI, and the splicing mutation (NM_031889.2: c.123 + 4 A > G) in the intron 4 of enamelin (ENAM) gene was observed in the proband and her father. This mutation led to exon 4 skipping. The predicted structures showed that there were obvious differences in the mutation proteins compared with wild type, leading to impaired function of mutant proteins. CONCLUSIONS: In this study, we identified two new splicing mutations in AMELX and ENAM genes, which cause hypoplastic-hypomature and hypoplastic AI, respectively. These results expand the spectrum of genes causing AI and broaden our understanding of molecular genetic pathology of enamel formation.


Assuntos
Amelogênese Imperfeita , Proteínas do Esmalte Dentário , Humanos , Feminino , Amelogenina/genética , Amelogênese Imperfeita/genética , Proteínas do Esmalte Dentário/genética , Proteínas do Esmalte Dentário/metabolismo , Mutação/genética , Proteínas Mutantes/genética , Proteínas da Matriz Extracelular/genética
18.
Curr Drug Targets ; 24(14): 1139-1149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37936447

RESUMO

INTRODUCTION: Amelogenesis imperfecta (AI) refers to a heterogeneous group of conditions with multiple factors which contribute to the hypomineralisation of enamel. Preventive measures are necessary to predict this pathology. Prospects for preventive medicine are closely related to the search for new informative methods for diagnosing a human disease. MicroRNAs are prominent for the non-invasive diagnostic platform. THE AIM OF THE STUDY: The aim of the review is to review the heterogeneous factors involved in amelogenesis and to select the microRNA panel associated with the AI type. METHODS: We used DIANA Tools (algorithms, databases and software) for interpreting and archiving data in a systematic framework ranging from the analysis of expression regulation from deep sequencing data to the annotation of miRNA regulatory elements and targets (https://dianalab. e-ce.uth.gr/). In our study, based on a gene panel associated with the AI types, twenty-four miRNAs were identified for the hypoplastic type (supplement), thirty-five for hypocalcified and forty-- nine for hypomaturation AI. The selection strategy included the microRNA search with multiple targets using the AI type's gene panel. RESULTS: Key proteins, calcium-dependent and genetic factors were analysed to reveal their role in amelogenesis. The role of extracellular non-coding RNA sequences with multiple regulatory functions seems to be the most attractive. We chose the list of microRNAs associated with the AI genes. We found four microRNAs (hsa-miR-27a-3p, hsa-miR-375, hsa-miR-16-5p and hsamiR- 146a-5p) for the gene panel, associated with the hypoplastic type of AI; five microRNAs (hsa- miR-29c-3p, hsa-miR-124-3p, hsa-miR-1343-3p, hsa-miR-335-5p, and hsa-miR-16-5p - for hypocalcified type of AI, and seven ones (hsa-miR-124-3p, hsa-miR-147a, hsa-miR-16-5p, hsamiR- 429, hsa-let-7b-5p, hsa-miR-146a-5p, hsa-miR-335-5p) - for hypomaturation. It was revealed that hsa-miR-16-5p is included in three panels specific for both hypoplastic, hypocalcified, and hypomaturation types. Hsa-miR-146a-5p is associated with hypoplastic and hypomaturation type of AI, which is associated with the peculiarities of the inflammatory response immune response. In turn, hsa-miR-335-5p associated with hypocalcified and hypomaturation type of AI. CONCLUSION: Liquid biopsy approaches are a promising way to reduce the economic cost of treatment for these patients in modern healthcare. Unique data exist about the role of microRNA in regulating amelogenesis. The list of microRNAs that are associated with AI genes and classified by AI types has been uncovered. The target gene analysis showed the variety of functions of selected microRNAs, which explains the multiple heterogeneous mechanisms in amelogenesis. Predisposition to mineralisation problems is a programmed event. Many factors determine the manifestation of this problem. Additionally, it is necessary to remember the variable nature of the changes, which reduces the prediction accuracy. Therefore, models based on liquid biopsy and microRNAs make it possible to take into account these factors and their influence on the mineralisation. The found data needs further investigation.


Assuntos
Amelogênese , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo
19.
J Med Case Rep ; 17(1): 436, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37858137

RESUMO

BACKGROUND: Metabolic bone disease causes significant morbidity and mortality, especially when misdiagnosed. With genetic testing, multiple disease pathologies can be analyzed. CASE PRESENTATION: A 5-year and 9-month-old otherwise healthy Yemeni girl presented to her Yemen physician for evaluation of inward bending of her right knee and short stature. After extensive medical testing, she was given a diagnosis of hypophosphatemic rickets and growth hormone deficiency and started on treatment. Despite appropriate treatment, however, her condition continued to progress, prompting her family to pursue additional workup including genetic testing outside of Yemen. Genetic testing ultimately revealed a variation of unknown significance associated with amelogenesis imperfecta. CONCLUSIONS: Hypophosphatemic rickets secondary to renal tubular acidosis was the working diagnosis. However, the patient's condition did not improve. Further genetic testing revealed a variation of unknown significance associated with amelogenesis imperfecta. We aim to present this case, provide an overview of the causes, and diagnostic metabolic bone health evaluation.


Assuntos
Acidose Tubular Renal , Amelogênese Imperfeita , Raquitismo Hipofosfatêmico , Feminino , Humanos , Lactente , Amelogênese Imperfeita/diagnóstico , Amelogênese Imperfeita/terapia , Erros de Diagnóstico
20.
Spec Care Dentist ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37885117

RESUMO

BACKGROUND: Amelogenesis Imperfecta (AI) is a disorder of tooth development characterized by abnormal enamel formation. In order to detect other dental and jawbone abnormalities that could be associated with AI, a retrospective and analytic study was conducted comparing panoramic radiographs of AI and non-AI patients. MATERIAL AND METHODS: Digital panoramic radiographs of 60 AI and 60 non-AI patients were examined. Abnormalities in dental number, size, shape, eruption, and in the shape of the dental arches were checked and blindly recorded by two experimented observers. Descriptive statistics using percentages and chi-square test with .05 level of significance value was used. RESULTS: Prevalence of supernumerary teeth, dental agenesis, microdontia, taurodontism, radicular dilacerations, dental inclusions, temporary teeth persistence, and pulp calcifications was significantly higher in AI patients compared to control patients. Prevalence of periapical images, cysts, and hypercementosis was lower in AI patients compared to control patients, with no statistically significant difference. A significant prevalence of mandibular hypoplasia was also noted in AI patients. CONCLUSION: In addition to enamel defect, panoramic radiography was useful in detecting other dental abnormalities and mandibular hypoplasia associated with AI and should therefore be systematically indicated for AI patients' care.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...